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Oligopeptides as Potential Antiaggregation Agent 
for Proteins: Hemoglobin S Gel and Insulin Dimer 

Sir: 

The ordered aggregation of certain proteins requires specific 
contact areas between associating protein molecules. Oligo­
peptides mimicking a portion of the amino acid sequence at the 
contact region has been proposed as potential antiaggregation 
agents.1 This is based on a working hypothesis that such oli­
gopeptides (A) might compete for the binding sites on the 
protein (P) molecules if they are energetically favorable or if 
their concentrations are sufficiently high, thereby shifting the 
equilibria: 

(1) P + P ^ P2 P + A <=> PA 

toward the monomeric complex PA which is incapable of as­
sociation. Reaction 1 does not rule out the possibility that P 
aggregates to form a nucleus Pm (m « n),2 but stops at Pm-PA 
instead of polymeric Pn. To test this idea, we present some 
preliminary studies of the influence of antiaggregation agents 
on two proteins: deoxygenated hemoglobin (Hb) S which gels 
and insulin which dimerizes. 
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Figure 1. Increase in the minimum gelling concentration of deoxyhemo-
globin S in the presence of various oligopeptides in phosphate buffer (pH 
6.8; ionic strength 0.1) at 37 0C. The MGC of deoxyHb S alone is 9.5 g 
dl_l. The baselines refer to the correction of additional ionic strength due 
to positively charged oligopeptide amides. See text. 

Hb S: Out of 574 amino acid residues Hb S differs from 
normal Hb A in only two mutation sites, that is, two /36 valine 
residues instead of glutamic acid. It is highly suggestive that 
the /31-6 region: 

1 6 

VaI His Leu Thr Pro VaI . . . 

might constitute one of the contact areas between neighboring 
molecules when deoxyHb S gels. Thus, we have synthesized 
a series of oligopeptide amides containing /31-6, /33-6, /35-6, 
and also a hexa-L-prolineamide (the latter is to test the speci­
ficity of these peptides). The effectiveness of these oligopep­
tides is determined by comparing the minimum gelling con­
centration (MGC)3 of deoxyHb S in phosphate buffer (pH 6.8; 
/ = 0.1) at 37 0 C. For control, the MGC of Hb S alone was 
found to be 9.5 g/dl at / = 0.1; addition of NaCl to increase 
its ionic strength raised the MGC to 10.3 g/dl at / = 0.16. 
Figure 1 shows the increase in MGC of deoxyHb S in the 
presence of various oligopeptides. (The imidazole-HCl in the 
hexapeptide was first neutralized with concentrated NaOH, 
which produced additional NaCl. This accounts for the dif­
ference in the baselines.) The most prominent feature is that 
the MGC increases almost linearly with the molar ratio of the 
hexapeptide /31-6 amide to Hb S. At a molar ratio of 2.5 
peptide per heme, the increment in MGC amounts to 75%. 
Shorter peptides such as tetrapeptide /33-6 and dipeptide /35-6 
amides are less effective than the hexapeptide amide /31-6. 
These results are consistent with the view that the oligopeptides 
compete for the binding site at the contact area. Hexa-L-pro­
lineamide also raises the MGC of deoxyHb S, although it is 
not as effective as /31 -6 amide. It is possible that (Pro)6 might 
interfere with some other contact area, thus making gelation 
difficult. (We also attempted to use (Gly)6 and (Ser)6, but their 
low solubilities at neutral pH made meaningful measurements 
of AMGC difficult.) Hemoglobin which is much larger than 
our other example, insulin, may provide locations other than 
those involved in intersubunit contacts which can associate less 
specifically with oligopeptides but with subsequent modifi­
cation of aggregation tendencies. Recently, small quantities 
(3.8 mM) of L-homoserine, L-glutamine, and L-asparagine, 
but no other amino acids, have been reported to inhibit and 
reverse the sickling of erythrocytes.4 Our preliminary studies 
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Figure 2. Effect of oligopeptides on the sedimentation coefficient of 0.38% 
insulin in glycine-HCl-NaCl buffer (pH 2; ionic strength 0.1) at 20 0C. 
Inset: concentration dependence of the s value of insulin in the same buffer. 

indicated that these three compounds had little or a small effect 
on the MGC of deoxyHb S.5 It seems that the morphology of 
red cells can be altered by agents which are without effect on 
in vitro gelation. 

Insulin: For insulin dimerization, the extended C-terminal 
residues of the B chains: 

23 29 
• • • GIy Phe Phe Tyr Thr Pro Lys Ala 

run antiparallel to each other. This makes possible the anti-
parallel /3-form between B24 and B29 which contains four 
hydrogen bonds between two monomers (B24 of one molecule 
to B26 of the other).6,7 Figure 2 shows the effect of several 
oligopeptides on the dissociation of insulin dimer in glycine-
HCl-NaCl buffer (pH 2; / = 0.1). The concentration of the 
protein was kept at 0.38% (6.6 X 1O-4 M (monomer)), since 
the sedimentation coefficient, s, of insulin began to drop below 
this concentration (see inset; also ref 8). Addition of a hepta-
peptide B23-29 (prepared by trypsin digestion of insulin)9 

reduces the j value linearly from about 1.7 S (mostly due to 
the dimer)8 toward the monomer (about 1.2 S at infinite 
dilution of the protein solution).10'1' Even a tripeptide B23-25 
appears to shift the dimer-monomer equilibrium, although it 
is less effective than the heptapeptide B23-29. On the other 
hand, hexaglycine and (Ala)3 have no effect on the sedimen­
tation coefficient. These results again suggest that oligopep­
tides having the same sequence as a portion of the C-terminal 
residues of the B chain might interfere with the dimerization 
of insulin. 

Segments of the peptide chain in a protein molecule are fixed 
in a right conformation, but isolated fragments such as the 
oligopeptides are largely random in solution. The binding, if 
any, of these compounds to proteins would result in a loss of 
configurational entropy, which must be compensated by a 
decrease in enthalpy through hydrogen bonding or hydrophobic 
interaction or both. Therefore, in general, the equilibrium 
association constant Kp is expected to be much larger than the 
equilibrium binding constant KA in reaction 1. The standard 
free energy change, AG0, for the equilibrium involving PA 
would determine the effectiveness of these antiaggregation 
agents. Raising their concentrations could help shift the 
equilibrium toward the monomeric PA. In this respect, the 
work of Eisinger et al. on tRNAphe may have some bearing on 
our findings.12 A codon trinucleotide does not bind with the 
complementary anticodon trinucleotide. However, a weak, but 
detectable binding does occur when the anticodon triplet is 
fixed in the tRNAphe molecule. The binding is the strongest 

when the triplets are parts of tRNA and mRNA molecules, 
respectively. Our protein-oligopeptide interaction may rep­
resent a similar intermediate case. 

Our initial objective is to seek an antisickling agent for 
deoxyHb S gel without introducing any chemical modification 
of the intact native proteins (an effective antisickling com­
pound is simply one that raises the MGC so high that deoxyHb 
S would not gel under physiological conditions).1 The idea that 
is implicit in reaction 1 can equally well be applied to other 
biological aggregates if the binding of the antiaggregation 
agent to a biopolymer is energetically favorable. This leads us 
to study the insulin dimerization. Although the evidence is not 
yet conclusive, the proposed working hypothesis merits further 
investigations of other biological systems. 
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Interpretation of Mass Spectroscopic Fragmentation 
by State Correlation Diagrams 

Sir: 

State correlation diagrams are useful in the interpretation 
of photochemical mechanisms.1 Here we apply such diagrams 
to a fundamental mass spectroscopic reaction, the fragmen­
tation (or a-cleavage) of ketone positive radical-ions.2,3 The 
departure of the alkyl fragment is assumed to occur in a co-
planar fashion. It is then possible to correlate all the low-lying 
states of reactant ion with the states of primary products. The 
coplanar path is not necessarily the best pathway for a given 
state (specific geometry reorganization occurs in each state), 
but it reveals correlations which control the dynamical behavior 
of even noncoplanar pathways.1 We illustrate the process with 
the a-cleavage of the acetaldehyde radical-cation, whose mass 
spectrum3b shows peaks for HCO+ (abundance 100) and 
CH3

+ (abundance 32)—corresponding to CC bond cleav­
age—as well as a peak for CH3CO+ (abundance 42), corre-
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